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Abstract 

Microchromosomes are common yet poorly understood components of many vertebrate 

genomes. Recent studies have revealed that microchromosomes contain a high density of genes 

and possess other distinct characteristics compared to macrochromosomes. Whether distinctive 

characteristics of microchromosomes extend to features of genome structure and organization, 

however, remains an open question. Here we analyze Hi-C sequencing data from multiple 

vertebrate lineages and show that microchromosomes exhibit consistently high degrees of 

interchromosomal interaction (particularly with other microchromosomes), appear to be co-

localized to a common central nuclear territory, and are comprised of a higher proportion of open 

chromatin than macrochromosomes. These findings highlight an unappreciated level of diversity 

in vertebrate genome structure and function, and raise important questions regarding the 

evolutionary origins and ramifications of microchromosomes and the genes that they house. 

Introduction 

The three-dimensional (3D) organization and interactions of the genome play fundamental roles 

in gene regulation and genome function (Cremer et al. 1993; Cremer and Cremer 2001). 

Advances in functional genomics approaches such as Hi-C sequencing (Lieberman-Aiden et al. 

2009) have broadened our understanding of 3D genomic interactions and organization in the 

nucleus, including how chromatin loops coordinate the regulation of genes and how 

chromosomes form discrete chromosome territories within the nucleus (Cremer et al. 1993; 

Cremer and Cremer 2001; Bolzer et al. 2005). Most studies of 3D genome organization and 

structure have focused on mammalian genomes that are exclusively comprised of 

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901  Support: (434) 964-4100

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/advance-article/doi/10.1093/m
olbev/m

saa253/5912540 by guest on 14 O
ctober 2020



3

macrochromosomes (Cremer et al. 1993; Kurz et al. 1996; Zink et al. 1998; Cremer and Cremer 

2001). However, many non-mammalian vertebrates possess microchromosomes - nuclear 

chromosomes generally smaller than 30 Mb in length - in addition to macrochromosomes (Ohno 

et al. 1969; Burt 2002; Zhou and Gui 2002; Consortium 2004; Axelsson et al. 2005; Schield et al. 

2019). Microchromosome number is variable across vertebrates, ranging from 0 in 

macrochromosome-only lineages to greater than 40 in other lineages (Deakin and Ezaz 2019; 

O’Connor et al. 2019). Vertebrate  microchromosomes consistently exhibit many distinct 

features across lineages, including high gene density, low transposable element content, and high 

rates of recombination (Consortium 2004; Backström et al. 2010; Schield et al. 2019; Schield et 

al. 2020), and represent a functionally and evolutionarily unique fraction of the genomes of many 

vertebrates. However, it remains largely unknown how 3D genomic features manifest in nuclei 

of vertebrates containing both macro- and microchromosomes. 

Recent Hi-C studies of vertebrates with microchromosomes have provided increasing evidence 

for distinct features of microchromosome organization and function. A study of the Prairie 

Rattlesnake (Crotalus viridis) found that microchromosomes exhibit higher degrees of 

interaction with other chromosomes than expected based on chromosome size (Schield et al. 

2019). A similar trend was observed in chicken erythrocytes (Gallus gallus) (Fishman et al. 

2018). This study also inferred AB compartments across the chicken genome, which broadly 

correspond to regions of open (A compartment) and closed (B compartment) chromatin 

(Lieberman-Aiden et al. 2009), and showed that microchromosomes exhibit a higher proportion 

of A compartment regions than macrochromosomes (Fishman et al. 2018). Together, these 

studies suggest that microchromosomes may be functionally and organizationally distinct 

compared to macrochromosomes. The extent to which these patterns represent universal 
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characteristics of microchromosomes remains unexplored, and their evolutionary causes and 

ramifications largely unconsidered. 

Here, we use recently published chromosome-level genome assemblies and Hi-C datasets for 

representatives of multiple vertebrate lineages to infer patterns of 3D interaction and 

organization of genomes that possess both macro- and microchromosomes. Based on these data, 

we demonstrate that high interchromosomal interaction and enrichment for A compartment 

regions are likely ubiquitous features of vertebrate microchromosomes, and find support for 

previous suggestions that microchromosomes co-inhabit the center of the nucleus. Collectively, 

these findings suggest that vertebrate genomes with microchromosomes may structurally, 

functionally, and evolutionarily operate in fundamentally distinct ways compared to 

macrochromosome-only genomes. This conclusion highlights the largely unexplored 

evolutionary relevance of the presence/absence of microchromosomes across vertebrate lineages, 

and the relevance of genes being encoded on microchromosomes. 

Results 

Our analyses of Hi-C data indicate that, for all species analyzed (Supp. Tables 1-2), 

interchromosomal contact frequency generally increases as chromosome size decreases (Fig. 1ai-

ii). Microchromosomes therefore exhibit a higher degree of interchromosomal interaction, with 

all non-mammalian species exhibiting a significantly higher degree of interchromosomal 

interaction in microchromosomes than in macrochromosomes (Fig. 1dii-iii). Interestingly, in the 

chicken, which possesses the smallest microchromosomes among all species we analyzed, there 

is an apparent inflection point in chromosome size at which interchromosomal activity begins to 

decrease as chromosome size continues to decrease (Fig. 1di, Supp. Fig. 1). This pattern is 
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apparent in all three chicken tissues analyzed, and less pronounced inflection points near the 

smallest microchromosomes in the Prairie Chicken (Fig. 1ei) and Sea Turtle (Fig. 1fi).

To further investigate patterns of interchromosomal contacts between macrochromosomes and 

microchromosomes, we compared empirical interchromosomal contact frequencies (ICFs) to 

ICFs predicted by a null model assuming uniform interactions between chromosomes, following 

(Zhang et al. 2012). In all non-mammalian species, we find an excess of ICFs between 

microchromosome pairs and fewer than expected ICFs between macrochromosomes and 

microchromosomes (Fig. 1div-iiv). Hierarchical clustering of chromosomes based on observed 

over expected ICFs distinguishes macrochromosomes from microchromosomes in nearly all 

species and tissues, with a small number of exceptions in the rattlesnake (Fig. 1iv) and the three 

chicken tissues analyzed (Supp. Fig. 1). 

For all species possessing microchromosomes, we inferred AB compartments based on patterns 

of interchromosomal contact frequencies at 50 kb resolution between all chromosomes and 

binned measures of GC content. We find that microchromosomes in all species are comprised of 

a significantly higher proportion of A compartment regions compared to macrochromosomes, 

which are predominately comprised of B compartment regions (Fig. 2, Supp. Fig. 2).

Genome-wide heatmaps of binned Hi-C contact frequency and 3D interpretations of interaction 

data both show evidence of well-defined chromosome territories for macrochromosomes (Fig. 3, 

Supp. Figs. 3-8). For microchromosomes, contact frequency heatmaps show elevated levels of 

intrachromosomal interaction (Supp. Fig. 3), and show an elevated degree of microchromosome-

microchromosome interaction. Furthermore, this high degree of microchromosome interaction 

results in a lack of obvious spatial distinction between microchromosomes in 3D interpretations 
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of Hi-C interaction data, and independent microchromosome territories are not well defined (Fig. 

3, Supp. Fig. 3-8). While 3D interpretations of Hi-C data should not be directly interpreted as 

biologically accurate models of the nucleus, they do provide fairly robust inferences regarding 

the degree of isolation of chromosomes based on patterns of 2D interaction. Note that 3D models 

were not generated for the three chicken tissues due to the data for several microchromosomes 

being too sparse to generate intrachromosomal contact maps at necessary resolution. 

Discussion 

Using Hi-C contact data from diverse vertebrate lineages, we demonstrate that 

microchromosomes consistently exhibit an elevated degree of interchromosomal interactivity 

compared to that of macrochromosomes. This pattern of elevated inter-chromosomal interaction 

for microchromosomes is consistent with previous studies of single species (chicken (Fishman et 

al. 2018), and rattlesnake (Schield et al. 2019)), and our expanded sampling indicate that these 

patterns are likely remarkably consistent across diverse vertebrate lineages. We consistently find 

that the high magnitude of microchromosome interactivity is dominated by microchromosome-

to-microchromosome interactions, and additionally show that microchromosomes are 

consistently enriched for, and in many cases comprised almost exclusively of, A compartment 

regions. These findings emphasize the unique structural and functional features of vertebrate 

microchromosomes, and raise interesting questions about the relationships between 

microchromosome structure and genome function and organization. 

Previous microscopy studies have suggested that bird microchromosomes inhabit the center of 

the nucleus with macrochromosomes arranged around them at the nuclear periphery (Habermann 

et al. 2001; Skinner et al. 2009; Berchtold et al. 2011). Similar studies have not yet, however, 
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been conducted for other species with microchromosomes (i.e. fish, non-avian reptiles), and the 

degree to which this chromosomal arrangement is conserved across vertebrates with 

microchromosomes remains unknown. Our findings of consistently elevated microchromosome-

microchromosome interactions is consistent with a model in which microchromosomes are 

localized in the center of the nucleus across diverse vertebrate lineages. This arrangement of 

microchromosomes is also supported by our inference that microchromosomes are primarily 

comprised of A compartment (open chromatin) regions, which tend to be concentrated at the 

center of the nucleus (Kosak et al. 2007; Misteli 2007). Taken together, our Hi-C based 

inferences and previous studies tentatively support a model of nuclear organization in which A-

rich microchromosomes occupy the center of the nucleus, surrounded by A-rich regions of 

macrochromosomes that inhabit the nuclear periphery (Fig. 3g). Interestingly, somewhat 

analogous examples exist in insect chromosomes (e.g., Drosophila dot chromosome), in which 

these chromosomes with distinct compositional characteristics (heterochromatic, gene dense, 

transposon-rich) occupy distinct regions of the nucleus (Riddle and Elgin 2018), implying broad 

links between nuclear chromosome organization and chromosome composition, structure and 

function. Future studies that utilize 3D fluorescence in situ hybridization for multiple vertebrates 

with microchromosomes would be particularly valuable for testing our hypotheses for nuclear 

organization, and the degree to which it is conserved across species and cell types. 

Available evidence suggests that microchromosomes collectively exhibit features that are distinct 

from typical macrochromosomes, in that they are closely associated in the nucleus and interact 

more frequently with other microchromosomes than to macrochromosomes. This argues for the 

presence of a microchromosome-specific territory in the nucleus that features a higher degree of 

interchromosomal interaction than typically observed for macrochromosomes (Fig. 3f). 

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901  Support: (434) 964-4100

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/advance-article/doi/10.1093/m
olbev/m

saa253/5912540 by guest on 14 O
ctober 2020



8

However, the degree to which microchromosomes inhabit well-defined individual territories 

within this encompassing microchromosome territory remains an open question; it is possible 

that the lack of defined microchromosome territories in our 3D interpretations of Hi-C data may 

result from variable positioning of microchromosomes across sampled cells (i.e., a merged 

‘average’ of relative position). It also remains an open question how such an arrangement of 

microchromosomes may influence the formation and position of the nucleolus in the nucleus. 

Regardless, the high degree of interaction among microchromosomes raises the possibility of 

inter-chromosomal regulatory interactions between microchromosomes, a phenomenon thought 

to be rare in macrochromosomes (Bashkirova and Lomvardas 2019; Maass et al. 2019) that 

should be explore further in microchromosomes. 

While our findings show notably similar characteristics between microchromosomes of multiple 

vertebrate lineages, it is worth noting that our current sampling is remarkably sparse in the 

context of vertebrate diversity, and lacks representatives from several important lineages that 

also possess microchromosomes (i.e. fish) for which Hi-C contact information data is not 

currently available. While we do observe consistent patterns across many of the tissue and cell 

types sampled here (whole blood, venom gland, erythrocytes) that may represent common 

features of microchromosome biology and organization, we expect variation and exceptions to 

these patterns to exist in various cell types, tissues, and developmental stages within species. 

Indeed, we observed evidence of variation in interchromosomal contact patterns when various 

chicken cell types are compared, with some of these variations being particularly distinct in 

chicken embryonic fibroblast cells (Supp. Fig. 1). The degree to which patterns of 

microchromosome interaction and structure observed here are broadly present and/or consistent 

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901  Support: (434) 964-4100

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/advance-article/doi/10.1093/m
olbev/m

saa253/5912540 by guest on 14 O
ctober 2020



9

across the full diversity of vertebrate lineages, tissue, and cell types therefore remains an open 

question for future studies, as additional data for diverse vertebrates becomes available.

A major consideration emphasized by our findings is how unique features of microchromosomes 

may affect the evolution of genes housed on microchromosomes. Unlike macrochromosomes, 

microchromosomes tend to share a common nuclear territory, and have high levels of 

interchromosomal interaction, and consist of mainly A compartment active chromatin. 

Intriguingly, despite this unusually high level of interchromosomal interaction, which may 

suggest functional interactions among microchromosomes, they segregate independently and 

consistently exhibit among the highest genome-wide recombination rates (Consortium 2004; 

Backström et al. 2010; Schield et al. 2020). This has profound implications for the evolution of 

genes on microchromosomes, and suggests that the rate and efficiency of selection, and the 

effects of drift, would be distinct on microchromosomes compared to macrochromosomes. For 

example, high recombination rates in microchromosomes would be very effective at breaking 

down linkage disequilibrium, breaking associations among selected alleles, and thereby 

increasing the efficacy of selection. These features suggest that microchromosomes possess ideal 

characteristics for housing genes underlying adaptation. Anecdotal support for this comes from 

the Prairie Rattlesnake genome, in which microchromosomes contain the majority of important 

venom genes, which are generally known to be under strong local selection (Mackessy 2010; 

Casewell et al. 2013; Schield et al. 2019), although more extensive systematic studies of 

additional vertebrate lineages would be necessary to test hypotheses for the special relevance of 

microchromosomes in adaptation. Continued accumulation of chromosome-level genome 

resources for diverse vertebrates will provide new opportunities to test hypotheses related to the 

roles of microchromosomes in genome evolution, investigate the relevance of genes and gene 
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families being located on microchromosomes, and elucidate the factors that drive shifts from 

macrochromosome-only systems to those containing both chromosome types.

Methods

Hi-C data were downloaded from the NCBI Sequence Read Archive for the Prairie Rattlesnake 

(Crotalus viridis), Burmese Python (Python bivittatus), Argentine Black and White Tegu 

(Salvator merianae), Green Sea Turtle (Chelonia mydas), Greater Prairie Chicken (Tympanuchus 

cupido), chicken (Gallus gallus), Rhesus Macaque (Macaca mulatta), Patski Mouse (Mus 

musculus x Mus spretus), and human (Homo sapiens). See Supplementary Table 1 for details. 

Hi-C reads for each species were mapped to genome assemblies and processed using the Juicer 

pipeline (Durand, et al. 2016). For each species, inter- and intrachromosomal contact matrices 

were extracted from the resulting Hi-C map using the dump command in Juicer Tools v1.9.9 at 

50kb, 100kb, and 1mb resolutions using KR-normalization and only reads that mapped with 

MAPQ > 30. The size at which a chromosome is designated a microchromosome is not well 

defined, and most previous studies have defined microchromosomes and macrochromosomes 

largely based on visual dichotomies apparent in chromosome squashes (ex. Habermann et al. 

2001). In this study, avian microchromosomes were defined as chromosomes shorter than 30Mb. 

Visual inspection of linear chromosome length for non-avian reptiles revealed a more apparent 

natural break between larger and smaller chromosomes around 50Mb, and we therefore defined 

chromosomes shorter than this as microchromosomes. Downstream analyses of observed versus 

expected interchromosomal contact frequencies (described below) lend support to this 

breakpoint, as chromosomes defined herein as macrochromosomes and microchromosomes 
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based on these criteria cluster strongly with others of the same type, with few exceptions (see 

Fig. 1). 

The sum of all interchromosomal contacts per chromosome was divided by chromosome length 

to produce a relative measure of interchromosomal contact density per chromosome, and the 

relationship between this normalized contact frequency and chromosome length was tested using 

linear regression in R (Team 2013). Differences between macrochromosome and 

microchromosome interchromosomal contact frequencies were tested using student’s t-tests. 

Observed contact frequencies were compared to the expected interchromosomal contact 

frequency for each chromosome pair assuming uniform interactions between chromosomes 

following (Zhang et al. 2012). The log2 ratio of observed over expected interchromosomal 

contact frequency was plotted as a heatmap in R using pheatmap v1.0.12 

(https://github.com/raivokolde/pheatmap). Heatmaps of Hi-C contact frequency were generated 

with Juicebox (Durand, Robinson, et al. 2016). 

miniMDS (Rieber and Mahony 2017) was used to generate 3D interpretations of Hi-C data using 

1Mb resolution interchromosomal contact data and 50kb resolution intrachromosomal contact 

data. miniMDS was run using full partitioning with minimum partition size 0.08 and the default 

smoothing parameter. The resulting 3D models were visualized using Mayavi (Ramachandran 

and Varoquaux 2011). Note that Hi-C data for the three chicken tissues was too sparse to 

generate 50kb intrachromosomal contact maps for input into miniMDS, and therefore these 

samples were excluded from 3D modeling. 

Juicer Hi-C matrices were converted to the cooler format (Abdennur and Mirny 2020) at 50 kb 

resolution using hic2cool v0.8.3 (https://github.com/4dn-dcic/hic2cool) and normalized using 
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‘balance’ within the cooler CLI package v0.8.7 (Abdennur and Mirny 2020). GC content was 

measured in 50 kb bins using the ‘nuc’ program within bedtools v2.29.0 (Quinlan and Hall 

2010). AB compartments were determined with ‘call-compartments’ within cooltools v0.3.2 

(https://github.com/mirnylab/cooltools) using trans (interchromosomal) contacts and binned 

measures of GC content as the reference track. The proportion of A compartment regions per 

chromosome was calculated as the number of 50 kb bins determined to belong to the A 

compartment divided by the total number of bins representing the chromosome and plotted in R. 

A student’s t-test was used to test for enrichment of A compartments on microchromosomes. 
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Figure 1. Microchromosomes exhibit elevated interchromosomal contact frequencies and interact 

preferentially with other microchromosomes. ai-ii) Sums of interchromosomal contact frequencies per 

chromosome normalized by chromosome length plotted over chromosome length. dii-iii) Comparisons of 

interchromosomal contact frequency normalized by chromosome length for macro and 

microchromosomes (*: p-value < 0.05, ***: p-value < 0.001, Student’s t-test). diii-iiii) Comparison of the 

proportion of interchromosomal contacts that involve a microchromosome for macrochromosomes and 

microchromosomes  (*** denotes p < 0.001, Student’s t-test). aii-cii, div-iiv) Heatmaps of the ratio of 

observed to expected interchromosomal contact frequency (ICF) between all chromosome pairs, with 

hierarchical clustering and chromosome type annotated above and to the left of each heatmap. 

Figure 2. Microchromosomes are enriched for the A compartment. Bar plots indicate the proportion 

of 50 kb bins for each chromosome that were determined to be A (red) and B (blue) compartment. In all 

species, microchromosomes exhibit a higher proportion of A compartment bins than macrochromosomes 

(boxplots on right; *** denotes p < 0.001, Student’s t-test). 

Figure 3. Microchromosomes are likely co-localized in the 3D nucleus. a-e) 3D interpretations of Hi-C 

interaction data shown as 2D point density plots from three distinct orientations for all chromosomes, 

macrochromosomes only, and microchromosomes only. For macro and micro- only plots, different colors 

represent different chromosomes. Shown at the bottom are 3D interpretations of all chromosomes, with 

macrochromosomes in greyscale and microchromosomes in color. Additional orientations for each 

species are available in Supp. Figs. 4-8. f-g) cartoon representations of a nucleus illustrating the 

hypotheses that f) microchromosomes are centrally located in the nucleus and collectively inhabit a 

“microchromosome territory” and g) that of spatial organization of A and B compartments in a nucleus 

containing A-rich microchromosomes. 
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